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ABSTRACT: This study presents a new diffusion model named the gradient-
dependent model. It is based on the strain-dependent model, a modification
of Fick’s diffusion model, and is employed to solve penetrant diffusion in a
2D-infinite plate with finite thickness. An immersion test is performed and analyzed
for studying moisture diffusing through the surfaces of a polymer matrix
composite laminate into the material and the induced in-plane expansion is
measured. The hygric expansion is proportional to the moisture concentration,
which can be derived from the gradient-dependent model involving parameters
standing for the hygric property of the material. By fitting the theoretical solution
of the hygric expansion to the data, the parameters for locating the penetrant
front can be obtained and they are very important in describing the hygric behavior
of the material.
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INTRODUCTION

F
ICK FIRST PUT diffusion on a quantitative basis and published the pioneering Fick’s
diffusion model in 1855 [1]. Fick’s hypothesis is that the rate of transfer of a diffusing

substance, called a penetrant, through a unit area of a cross section of the media is
proportional to the gradient of the penetrant concentration in diffusion direction but
with the opposite sign. The model has been adopted in solving many diffusion cases, such
as diffusions in semi-infinite domain and a 2D-infinite plate. However, all the solutions
based on the model indicate that the penetrant concentration everywhere in the media
material becomes non-zero immediately after the diffusion begins. If the location is deep
and the diffusion duration is short, then the concentration is very low but non-zero.
No penetrant molecules can possibly penetrate the media and reach the deeper part of
the material without reasonable duration.

Frisch et al. [2] modified the model into a strain-dependent model by including the first
derivative term of the penetrant concentration w.r.t. the diffusion coordinate into the
governing equation of Fick’s model, and solved two cases, diffusions in semi-infinite
domain and a 2D-infinite plate with finite thickness [2,3]. Their solutions indicate that
the penetrant penetrates the media progressively. The location of the penetrant front can
be calculated from the solution which is the advancing front boundary of the diffusing
penetrant [4].

However, Frisch et al.’s solution for diffusion in the 2D-infinite plate does not
satisfy the condition that the penetrant concentration in the plate has to be symmetrical
w.r.t. the center of the plate when the external conditions on both sides are the same.
This study confirms that the strain-dependent model can never result in a symmetric
solution for the case. However, if the sign of the first derivative term in the strain-
depending model is dependent on the diffusion direction, then the model can yield a
symmetric solution for the case. The modified model is called the gradient-dependent
model.

An immersion test of unidirectional continuous fiber polymer matrix T700 carbon/
epoxy composite laminate was conducted. In the experiment, dry composite laminates
were immersed in water, and the data of their expansion in in-plane fiber’s
transverse direction induced by moisture absorption through both surfaces were
obtained by the suspension method [5,6]. The hygric expansion is proportional to
the average moisture concentration in the laminate, which can be calculated by the
solution derived from theoretical diffusion model allowing the theoretical function of
the hygric expansion to be derived [5,6]. The function involves parameters denoting
the hygric property of the material. Based on least square curve fitting, the
parameters can be obtained when adjusting them to optimize the fitting of the function
to the data. The parameters are very important for describing the hygric property
of the material to predict the hygric behavior of the laminate such as the induced
hygric stress.

The theoretical function of the hygric expansion derived from Fick’s model can fit the
data very well. The gradient-dependent model only provides a limited improvement to
the fitting, which is not the major concern of this study. The major contributions of this
study are: (1) developing the delicate gradient-dependent diffusion model to calculate
the penetrant front [3] (advancing boundary [1,4]), and (2) configuring the experimental
and analysis process for obtaining the saturated hygric expansion strain, diffusivity,
and gradient coefficient of a plate.
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THEORETICAL BACKGROUND

The governing equation of Fick’s model for one-dimensional penetrant diffusing in the
media is given by

@c

@t
¼ D

@2c

@x2
ð1Þ

where c is the penetrant concentration in the media; t is the diffusion duration; D is the
diffusivity, and x is the coordinate of diffusion direction. When the original of the
coordinate x is set at the center of the plate (Figure 1), the solution of c for the penetrant
diffusing through both surfaces into a 2D-infinite plate with thickness h is given by [1]

cðt,xÞ ¼ c1 1�
4

�

X1
n¼1,3,5,:::

ð�1Þðn�1Þ=2

n
e�ðn�=hÞ2Dtcos

n�

h
x

� �" #( )
ð2Þ

where c1 is the saturated concentration. The average concentration over the thickness is
given by

�cðtÞ ¼ c1 1�
8

�2

X1
n¼1,3,5,...

1

n2
e�ðn�=hÞ2Dt

" #
: ð3Þ

If the hygric expansion of the material is proportional to the concentration [6], then
the in-plane hygric expansion strain of the plate is given by [6]

"ðtÞ ¼ "1 1�
8

�2

X1
n¼1,3,5,...

1

n2
e�ðn�=hÞ2Dt

" #
ð4Þ

x

h

Diffusion
direction

Diffusion
direction

Figure 1. Penetrant diffusing through both surfaces into a 2D-infinite plate with thickness h.
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where "1 is the saturated hygric strain. For an unidirectional composite laminate, the
hygric strain in the fiber direction is extremely small [5,6]. This study focuses on the hygric
expansion in the in-plane fiber’s transverse direction due to moisture absorption through
both surfaces, which can be measured by the suspension method [6] (Figure 2). The values
of "1 and D can be derived by fitting Equation (4) to the data of the hygric expansion
strain.

However, the penetrant needs time to reach the core part of the media material [1],
indicating that Equation (2) is improper because it shows that immediately after the
diffusion begins, the c at the center of the plate (x¼ 0) becomes non-zero, regardless
of how small t is and how large h is. The value of c is very small but definitely non-zero.
This result implies that very few molecules of the penetrant can penetrate the material
and reach the deepest core part of the plate in no time as the diffusion begins, and that
cannot be true.

This problem could not be solved until Frisch et al. published a different model [2,3].
A first-order derivative term was included in Equation (1), producing

@c

@t
¼ D

@2c

@x2
� �

@c

@x
ð5Þ

where � is the coefficient for the first-order derivative term of c w.r.t. x, gradient
coefficient. The model was named the strain-dependent model. Two cases were solved
using the model, diffusions in semi-infinite domain and a 2D-infinite plate with finite
thickness. The solutions indicate an advancing boundary [1], showing that the penetrant
front moves progressively deeper into the inner part of the material. Nevertheless, the
solution for the second case does not satisfy the condition that the penetrant concentration
should be symmetric w.r.t. the center of the plate when the conditions on both sides are
the same. The details of solving this case are reconsidered herein.

To solve Equation (5), let c(t, x)¼T(t)X(x), where T is a function of t and X is a
function of x. Equation (5) becomes

_TX ¼ DTX00 � �TX0 ð6Þ

_T

T
¼

DX00 � nX0

X
¼ �k, k: constant ð7Þ

_Tþ kT ¼ 0

DX00 � nX0 þ kX ¼ 0

(
ð8Þ

In-plane
fiber’s transverse direction
(length direction)

Fiber’s longitudinal direction
(width direction)

x
Out-of-plane
fiber’s transverse direction
(thickness direction)

Surface

Edges (aluminum foil sealed)

Figure 2. Three principal directions of an unidirectional composite laminate.
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For k¼ 0,

T¼K1, K1 : constant

X¼K2 or K3e
ð�=DÞx, K2,K3 : constants

�
ð9Þ

cðt,xÞ ¼ K1K2 þ K1K3e
n=Dð Þx ¼ �0 þ �1e

n=Dð Þx, �0,�1 : constants: ð10Þ

For k 6¼ 0, and k¼ �2/4D or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4Dk

p
¼ 0

T ¼ K4e
�kt ¼ K4e

��2=4Dð Þx, K4 : constant

X ¼ K5e
�=2Dð Þx or K6xe

�=2Dð Þx, K5,K6 : constants

(
ð11Þ

cðt,xÞ ¼ K4K5e
� �2=4Dð Þtþ �=2Dð Þx þ K4K6xe

�2=4Dð Þtþ �=2Dð Þx

¼ �2e
� �2=4Dð Þtþ �=2Dð Þx þ �3xe

� �2=4Dð Þtþ �=2Dð Þx, �2,�3 : constants: ð12Þ

For k 6¼ 0, and �2� 4Dk<0

T ¼ K7e
�kt, K7 : constant

X ¼ K8e
�=2Dð Þxsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dk� �2

p

2D
x

 !
or K9e

�=2Dð Þxcos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dk� �2

p

2D
x

 !

K8,K9 : constants

8>>><
>>>:

ð13Þ

cðt,xÞ ¼ K7K8e
�ktþ �=2Dð Þxsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dk� �2

p

2D
x

 !
þ K7 K9e

�ktþ �=2Dð Þxcos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dk� �2

p

2D
x

 !

¼ �4e
�ktþ �=2Dð Þxsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dk� �2

p

2D
x

 !
þ �5e

�ktþ �=2Dð Þxcos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dk� �2

p

2D
x

 !

�4,�5 : constants: ð14Þ

For multiple values of k, kn, n¼ 1 to 1,

cðt,xÞ ¼
X1
n¼1

�4ne
�kntþ �=2Dð Þxsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dkn � �2

p
2D

x

 !
þ �5ne

�kntþ �=2Dð Þxcos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dkn � �2

p
2D

x

 !" #

kn,�4n,�5n : constants:

ð15Þ

For k 6¼ 0, and �2� 4Dk>0

T ¼ K10e
�kt, K10 : constant

X ¼ K11e
�þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�2�4Dk

p
=2Dð Þx or K12e

��
ffiffiffiffiffiffiffiffiffiffiffiffi
�2�4Dk

p
=2Dð Þx, K12,K13 : constants

(
ð16Þ

cðt,xÞ ¼ K10K11e
�ktþ �þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�2�4Dk

p
=2Dð Þx þ K10K12e

�ktþ ��
ffiffiffiffiffiffiffiffiffiffiffiffi
�2�4Dk

p
=2Dð Þx

¼ �6e
�ktþ �þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�2�4Dk

p
=2Dð Þx þ �7e

�ktþ ��
ffiffiffiffiffiffiffiffiffiffiffiffi
�2�4Dk

p
=2Dð Þx, �6,�7 : constants: ð17Þ
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For multiple values of k, kn, n¼� 1 to�1,

cðt,xÞ ¼
X�1

n¼�1

ð�6ne
�kntþ �þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�4Dkn

p
=2D

� �
x
þ �7ne

�kntþ ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�4Dkn

p
=2D

� �
x
Þ, kn,�6n,�7n : constants:

ð18Þ

The general form of c is the combination of Equations (10), (12), (15), and (18).

cðt,xÞ ¼ �0 þ �1e
�=Dð Þx þ �2e

� �2=4Dð Þtþ �=2Dð Þx þ �3xe
� �2=4DÞtð þ �=2Dð Þx

þ
X1
n¼1

�4ne
�kntþ �=2Dð Þx sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dkn � �2

p
2D

x

 !
þ �5ne

�kntþ �=2Dð Þx cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dkn � �2

p
2D

x

 !" #

þ
X�n

n¼�1

�6ne
�kntþ �þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�4Dkn

p
=2D

� �
x
þ �7ne

�kntþ �þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�4Dkn

p
=2D

� �
x

� �
:

ð19Þ

When t! 1, c should approach a steady saturated state. Consequently, kn and D cannot
be negative, unless the terms involving t do not exist. In the studied case, moisture diffuses
through both surfaces into a 2D-infinite dry plate with thickness h which is immersed in
water. If the original of the x-coordinate is set at the center of the plate and its direction
is defined as perpendicular to the plate, then the distribution of the moisture inside
the plate should be symmetric w.r.t. x (Figures 1 and 2). However, it is impossible to derive
a symmetric solution from Equation (5), because if c is symmetric, @c=@t and @2c=@x2 must
be symmetric, but @c=@x must be anti-symmetric. An equation cannot have both non-
trivial symmetric and anti-symmetric functions. To keep the form of Equation (5) and
make the solution symmetric, the equation must be redefined as

@c

@t
¼

Diffusion is in positive x-direction: ðx < 0 for the studied case:Þ

D
@2c

@x2
� �

@c

@x
Diffusion is in negative x-direction: ðx > 0 for the studied case:Þ

D
@2c

@x2
þ �

@c

@x
:

8>>>>><
>>>>>:

ð20Þ

This model is named the gradient-dependent model, implying that the D@2c=@x2 always
helps @c=@t, while @c=@x retards the @c=@t when the diffusion is in the positive direction of
the x-coordinate, but accelerates it when the diffusion is in the negative x-coordinate
direction. Equation (19) is then just for x<0 part of the plate in the studied case. For
x> 0, Equation (19) becomes

c ¼ �0 þ �1e
� �=Dð Þx þ �2e

� �2=4Dð Þt� �=2Dð Þx þ �3xe
� �2=4Dð Þt� �=2Dð Þx

þ
X1
n¼1

�4ne
�knt� �=2Dð Þx sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dkn � �2

p
2D

x

 !
þ �5ne

�knt� �=2Dð Þx cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dkn � �2

p
2D

x

 !" #

þ
X�n

n¼�1

�6ne
�kntþ ��þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�4Dkn

p
=2D

� �
x
þ �7ne

�kntþ ���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�4Dkn

p
=2D

� �
x

� �
:

ð21Þ
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Even though the 4th, 5th, 7th, and 8th terms still make c in Equations (19) and (21)
not symmetric, meaning �3,�4n,�6n, and �7n must vanish. Equations (19) and (21) then
become

cðt,xÞ ¼ �0 þ �1e
� �=Dð Þ xj j þ �2e

� �2=4Dð Þt� �=2Dð Þ xj j þ
X1
n¼1

�5ne
�knt� �=2Dð Þ xj j cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dkn � �2

p
2D

x

 !" #
:

ð22Þ

To satisfy the condition that c(1, x)¼ c1, let �0¼ c1, �1¼ 0. Equation (22) becomes

cðt,xÞ ¼ c1 þ �2e
� �2=4Dð Þt� �=2Dð Þ xj j þ

X1
n¼1

�5ne
�knt� �=2Dð Þ xj j cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dkn � �2

p
2D

x

 !" #
: ð23Þ

Rearranging Equation (23) yields

e �=2Dð Þ xj j½cðt,xÞ � c1� ¼ �2e
� �2=4Dð Þt þ

X1
n¼1

�5ne
�knt cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dkn � �2

p
2D

x

 !" #
: ð24Þ

When t¼ 0,

e �=2Dð Þ xj j½cð0,xÞ � c1� ¼ �2 þ
X1
n¼1

�5n cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dkn � �2

p
2D

x

 !" #
: ð25Þ

The plate is initially dry, except for the surfaces which are assumed to become saturated
immediately after the diffusion starts. To cover this initiation condition,

cð0,xÞ ¼ 0,�
h

2
< x <

h

2
ð26Þ

and to satisfy the boundary condition that c(t,�h/2)¼ c1, a periodical function with a
period 2h is defined.

cpðxÞ ¼

c1 1þ e �=2Dð Þðh�2xÞ
	 


,
h

2
< x < h

0, �
h

2
< x <

h

2

c1 1þ e �=2Dð Þðhþ2xÞ
	 


, � h < x < �
h

2
:

8>>>>><
>>>>>:

ð27Þ

Replacing c(0, x) in Equation (25) with cp(x) of Equation (27), we get

e �=2Dð Þjxj½cpðxÞ � c1� ¼

c1e �=2Dð Þðh�xÞ,
h

2
< x < h

�c1e �=2Dð Þjxj, �
h

2
< x <

h

2

c1e �=2Dð ÞðhþxÞ, � h < x < �
h

2
:

8>>>>><
>>>>>:

ð28Þ
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Equation (28) can be expressed by Fourier series as

e �=2Dð Þ xj j cpðxÞ � c1
	 


¼ a0 þ
X1
n¼1

an cos
2n�

2h
x

� �� �
ð29Þ

where

a0 ¼
1

2h

Z h

�h

e �=2Dð Þ xj j cpðxÞ � c1
	 


dx ¼ 0 ð30Þ

an ¼
1

h

Z h

�h

e �=2Dð Þ xj j cpðxÞ � c1
	 


cos
n�

h
x

� �
dx

¼ �c1
2

h

Z h=2

0

e �=2Dð Þxcos
n�

h
x

� �
dxþ c1

2

h

Z h

h=2

e �=2Dð Þðh�xÞcos
n�

h
x

� �
dx: ð31Þ

Let z¼ h�x in the second term of Equation (31).

an ¼ �c1
2

h

Z h=2

0

e �=2Dð Þxcos
n�

h
x

� �
dxþ c1

2

h

Z h=2

0

e �=2Dð Þzcos n��
n�

h
z

� �
dz: ð32Þ

For n¼ 1, 3, 5, . . . ,

an ¼ �c12
e �h=4Dð Þ n�=2ð Þð�1Þ n�1ð Þ=2ð Þ

� �h=4Dð Þ

�h=4Dð Þ
2
þ n�=2ð Þ

2
: ð33Þ

For n¼ 2, 4, 6, . . . ,

an ¼ 0: ð34Þ

From Equations (25) and (29), �2¼ a0¼ 0, �5n,n¼ 2, 4, 6 . . .¼ an,n¼ 2, 4, 6, . . .¼ 0,
�5n,n¼ 1, 3, 5 . . . ¼ an,n¼ 1, 3, 5, . . . , and

kn ¼
�h

4D

� �2

þ
n�

2

� �2" #
D

ðh=2Þ2
: ð35Þ

Equation (23) then becomes

cðt,xÞ ¼ c1 1� 2
X1

n¼1,3,5,...

e �h=4Dð Þ n�=2ð Þð�1Þ n�1Þ=2ð
� �h=4Dð Þ

�h=4Dð Þ
2
þ n�=2ð Þ

2

"(

�e�½ �h=4Dð Þ
2
þ n�=2ð Þ

2
� D=ðh=2Þ2ð Þt� �=2Dð Þ xj j cos

n�

h
x

 !#)
� 0:

ð36Þ
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Equation (27) is delicately designed to produce Equation (28), which is anti-symmetric
w.r.t. x¼�h/2 in the area �h<x<0 and also anti-symmetric w.r.t. x¼ h/2 in the area
0<x<h, but symmetric w.r.t. x¼ 0 in the period �2h<x<2h. Consequently,
an,n¼ 2, 4, 6, . . .¼ 0 in Equation (29) to make c in Equation (36) satisfy the boundary
condition that c(t,� h/2)¼ c1.

If �¼ 0, then Equation (36) becomes Equation (2). Mathematically when � 6¼ 0, it
is possible that c(t,x) calculated from Equation (36) may be negative in some center
area if t is not longer that certain critical value, c(t, x)<0 in�x0<x<x0 and c(t, x)>0
in �h/2<x<x0 and x0<x<h/2, where x0 stands for the coordinate of the penetrant
front. However, a negative moisture concentration does not have any physical sense.
Let c(t, x)¼ 0 when �x0<x<x0 is representing the dry area around the center of the plate.
In this case, the plate is partially wet. When t is big enough, c(t, x) is positive everywhere
in the plate even at the deepest center, indicating that the plate is thoroughly wet, but
not saturated until t ! 1.

Based on Equation (36), t can be solved numerically by letting c(t, x0)¼ 0 for a given x0,
which is the diffusion duration required for the penetrant to reach location x0.

0 ¼ 1� 2
X1

n¼1,3,5,...

e �h=4Dð Þ n�=2ð Þð�1Þ n�1ð Þ=2ð Þ
� �h=4Dð Þ

�h=4Dð Þ
2
þ n�=2ð Þ

2

"

�e� �h=4Dð Þ
2
þ n�=2ð Þ

2½ � D=ðh=2Þ2ð Þt� �=2Dð Þx0 cos
n�

h
x0

� �#
:

ð37Þ

Let x0¼ 0 in Equation (37), then

0 ¼ 1� 2
X1

n¼1,3,5,...

e �h=4Dð Þ n�=2ð Þð�1Þ n�1ð Þ=2ð Þ
� �h=4Dð Þ

�h=4Dð Þ
2
þ n�=2ð Þ

2
e� �h=4Dð Þ

2
þ n�=2ð Þ

2½ � D=ðh=2Þ2ð Þtc

" #
ð38Þ

where tc is the critical diffusion duration required for the penetrant to reach the center of
the plate. Reversely, x0 can be solved from Equation (37) for a given t smaller than tc.

The average concentration in the plate is given by

�cðtÞ ¼

R h=2
�h=2 cðt,xÞdx

h
: ð39Þ

When t<tc, Equation (39) becomes

�cðtÞ ¼ c1 1�
2x0
h

� 2
X1

n¼1,3,5,...

e �h=4Dð Þ n�=2ð Þð�1Þ n�1ð Þ=2ð Þ
� �h=4Dð Þ

	 

�h=4Dð Þ

2
þ n�=2ð Þ

2
	 
2

"(

e� �h=4Dð Þ n�=2ð Þð�1Þ n�1ð Þ=2ð Þ
þ e� �=2Dð Þx0 �h=4Dð Þ cos n�=hð Þx0Þ � n�=2ð Þ sinð n�=hð Þx0ð Þ½ �

 �
e� �h=4Dð Þ

2
þ n�=2ð Þ

2½ � D=ðh=2Þ2ð Þt

#)
:

ð40Þ
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When t>tc, Equation (39) becomes

�cðtÞ ¼ c1 1�2
X1

n¼1,3,5,...

e�h=4Dn�=2ð�1Þ n�1ð Þ=2
� �h=4Dð Þ

	 

e� �h=4Dð Þn�=2ð�1Þ n�1ð Þ=2

þ�h=4D
	 


�h=4Dð Þ
2
þ n�=2ð Þ

2
	 
2

"(

e� �h=4Dð Þ
2
þ n�=2ð Þ

2½ � D= ðh=2Þ2ð Þð Þt

#)
:

ð41Þ

If �¼ 0, then Equations (40) and (41) become Equation (3).
Assuming that the hygric expansion strain of the material is proportional to its

concentration [6], the hygric expansion strain of the plate in the in-plane direction becomes

"ðtÞ ¼ "1 1� 2x0=hð Þ � 2
X1

n¼1,3,5,...

e �h=4Dð Þ n�=2ð Þð�1Þ n�1ð Þ=2ð Þ
� �h=4Dð Þ

	 

�h=4Dð Þ

2
þ n�=2ð Þ

2
	 
2

"(

e� �h=4Dð Þ n�=2ð Þð�1Þ n�1ð Þ=2ð Þ
þ e� �=2Dð Þx0 �h=4Dð Þ cos

n�

h
x0

� �
� n�=2ð Þ sin

n�

h
x0

� �h in o

e�½ �h=4Dð Þ
2
þ n�=2ð Þ

2
� D=ðh=2Þ2ð Þt

#)

ð42Þ

for t<tc, and

"ðtÞ ¼ "1 1� 2
X1

n¼1,3,5,...

½e�h=4Dn�=2ð�1Þ n�1ð Þ=2
� �h=4Dð Þ�½e� �h=4Dð Þn�=2ð�1Þðn�1Þ=2

þ �h=4D�

�h=4Dð Þ
2
þ n�=2ð Þ

2
	 
2

"(

e� ð �h=4Dð ÞÞ
2
þ n�=2ð Þ

2½ �ðD=ðh=2Þ2Þt

#)

ð43Þ

for t> tc.

EXPERIMENT AND ANALYSIS

An immersion test was performed on four-ply 0.057 cm thick unidirectional continuous
fiber T700 carbon/epoxy composite laminates. Six square specimens, 20 cm long and 4 cm
wide, were prepared such that the fiber of the laminate is in the width direction (Figure 2).
The specimens were dried at 80�C for a week before the experiment to ensure that no
moisture remained inside. All the edges were sealed by a 0.05mm thick aluminum foil to
ensure that no moisture diffused into the laminate through the edges to match the theory
assumption. The aluminum foil was glued to the edges of each specimen by using silicon
to make diffusion occur only through both surfaces not through the edges [6].
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The data of hygric expansion strain of the specimens immersed in water were collected
using the suspending method [6]. A piece of G-glass fiber was attached horizontally to the
surface of each specimen by gluing both its ends. The G-glass fiber, with a nine-micron
filament diameter supplied by Ovens-Corning that would not expand by absorbing
moisture was employed as a tool for measuring the hygric expansion strain of the laminate.
A tiny weight of around 1mg was hung at the center of the fiber to stretch it. A piece of
ruler, hung on the surface of the specimen but behind the fiber, was applied as a dimension
reference (Figure 3). The specimens were held such that the width direction was vertical
and the length direction was horizontal (Figure 4).

The horizontal distance between the glued ends of the fiber was around 18 cm, and the
deflection at the center was around 0.5 cm. The exact length of the fiber can be calculated
easily by Pythagorean relation. When the laminate with the fiber was immersed in water
in a transparent container, it started to absorb water, expand, and pull the two glued ends
of the fiber slightly apart. Since the total length of the fiber never changed, the deflection
at the center of the fiber had to decrease. The deflection at the center of the fiber
was recorded by a camera with a zoom-up lens. When t¼ ti and the deflection at the center
of the fiber is given by di, the hygric expansion strain in the horizontal direction of the
laminate is given by

ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw0=2Þ

2
þ d 2

0 � d 2
i

q
w0=2

� 1 ð44Þ

where d0 is the initial deflection at the center of the fiber, and w0 is the initial distance
between the glued ends of the fiber.

Let "i be the theoretical hygric expansion strain calculated from Equation (4) or
Equations (42) and (43) when t¼ ti. The error between ei and "i is given by

Ei ¼ ei � "i: ð45Þ

The sum of the error square is given by

SSE ¼
Xn
i¼1

E2
i ¼

Xn
i¼1

ei � "ið Þ
2: ð46Þ

When adopting Fick’s model, Equation (4) is used to calculate "i in Equation (46), and D
and "1 can be obtained through minimizing the SSE. When the gradient-dependent model

G-glass fiber
Suspended small weight

Glued end

Ruler

di

Figure 3. Specimen with a piece of G-glass fiber glued on its surface for measuring hygric strain.
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is adopted, the values of D, "1, and � can be derived in the same way. A commercial
software is employed to minimize the SSE numerically for obtaining the parameters.

Based on the data of the six specimens, the values of D and "1 for Fick’s model, D,
"1, and � for the gradient-dependent model, and their standard deviations are listed in
Table 1. A typical set of the hygric expansion strain is displayed in Figure 5. By fitting
Equation (4) based on Fick’s model to the data, the SSE is smaller than 6� 10�9.
The fitted values tend to be slightly too low when t<15days, too high when
15 days<t<50days, and too low when t>50 days. The mismatch is no larger than
0.6� 10�4 which is much smaller than the standard deviation of "1, 2� 10�4. The fitting
is very good. Nevertheless, the same mismatch trend occurs in every single data set.
When fitting Equations (42) and (43) to the data, the SSE is smaller than 5.5� 10�9.
Numerically, the improvement in the SSE is very limited, but the previous mismatch trend
disappears. The fitting becomes excellent.

Nylon string

Figure 4. Specimens immersed in water in a rectangular glass container.

Table 1. Diffusivity and gradient coefficient in out-of-plane fiber’s transverse
direction, and saturated hygric strain in in-plane fiber’s transverse direction

of T700 carbon/epoxy composite laminate for Fick’s diffusion model
and gradient-depending diffusion model.

D�S.D. (�10�5 cm2/day) e1�S.D. m�S.D. (cm/day)

Fick’s model 1.70� 0.20 0.0021�0.0002 –
Gradient-depending model 1.40� 0.20 0.0021�0.0002 0.0009� 0.0001
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One of the most important functions of the developed model is to locate the penetrant
front, which is the deepest location where penetrant reaches. Figure 6 shows the
theoretically predicted coordinate of the moisture front versus diffusion duration based on
the values of Table 1. The analysis indicates that the moisture thrusted into the material
by around 0.15mm deep in the first 5 h, slowed down later, and took 10.18 days to travel
0.285mm to reach the center of the laminate making the laminate thoroughly wet.
Verifying the predicted moisture front experimentally in such a thin laminate is a challenge
in our future work. Figure 7 shows the distribution of the moisture concentration in the
laminate.
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Figure 6. Theoretically predicted coordinate of moisture front over thickness of specimen vs immersion
duration of 0.057 cm thick unidirectional T700 carbon/epoxy composite laminate in immersion test.
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Figure 5. Experimental data of hygric expansion strain vs immersion duration of T700 carbon/epoxy
composite laminate in immersion test.
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CONCLUSIONS AND DISCUSSIONS

An immersion test of a composite laminate was conducted by using the suspension
method, and the data were analyzed by Fick’s model and the developed gradient-
dependent model. Both models describe well the overall hygric expansion behavior of
the laminate.

The gradient-dependent model is a refinement of Fick’s model taking into consideration
the sensitivity and dependency of diffusion on concentration gradient and its sign. The
theoretical solution of concentration in the plate is derived based on the proposed model
for the case of diffusion in a 2D-infinite plate, which clearly locates the penetrant front
that does not exist in the solution based on Fick’s conventional model.

The dynamic location of the penetrant front is a very important index indicating how
deep the penetrant penetrates into the media material. Locating penetrant front can solve
many practical problems, such as how long moisture will penetrate the protecting concrete
and reach the reinforcing steel to induce corrosion in a reinforced concrete structure
immersed in salty water, how many years a composite black box can protect the record
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Figure 7. Distribution of moisture concentration for 0.057 cm thick unidirectional T700 carbon/epoxy
composite laminate in immersion test.
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of a crushed aircraft in water, how fast molecules of medicine can penetrate the human
skin into the human body, etc if all related parameters can be obtained. Characterizing
the parameters for the model in each case will be one of the main issues for employing
the model in real case.

Results of this work indicate an interesting phenomenon that when a dry carbon/epoxy
laminate is immersed in water, the moisture will penetrate instantly into the laminate
to certain depth first, and then diffuse slowly toward the center of the laminate.
This phenomenon is named moisture shock, similar to thermal shock. Studying the details
of the moisture shock based on the proposed model is important in the future for
quantifying penetrant absorption and the effects on the media of the early diffusion
stage, such as how much, how deep, and how fast the penetrant thrusts into the media,
how much stress is induced in the media, why the diffusion rate slows down later, and
what mechanism dominates the thrust.

NOMENCLATURE

a0, an ¼ coefficients for constant and cosine terms of Fourier series
c ¼ penetrant (moisture) concentration

c1 ¼ saturated penetrant (moisture) concentration
�c ¼ average penetrant (moisture) concentration over the thickness of the plate
cp ¼ a periodical function with a period of 2h
di ¼ deflection at the center of the fiber
d0 ¼ initial di
D ¼ diffusivity
e ¼ experimental "
ei ¼ experimental "i
Ei ¼ error between ei and "i
h ¼ thickness of the plate
k ¼ constant

k1�12 ¼ constants
n ¼ index for a series

SSE ¼ summation of the Ei square
t ¼ diffusion duration
tc ¼ critical t when the penetrant reaches the center of the plate
T ¼ a function of t
w0 ¼ initial distance between the glued ends of the fiber
x ¼ coordinate of diffusion direction
x0 ¼ coordinate of the penetrant front
X ¼ a function of x
z ¼ h�x

�1�7 ¼ constants
�4n�7n ¼ constants

" ¼ in-plane hygric expansion strain of the plate
"i ¼ " when t¼ ti

"1 ¼ saturated "
� ¼ gradient coefficient
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